This multi-state material is made possible by a mix of breathable membranes imbued with pores made of vertically-aligned carbon nanotubes beneath a surface layer of material designed to respond to various chemical and biological agents. These carbon nanotube pores offer high gas transport rates, yet they are small enough to keep biological agents like bacteria and viruses at bay. But for chemical agents like mustard gas or nerve gas that could potentially pass through the pores, the functional materials actually sense the presence of a threat and close to block them out. The researchers are also developing a second mechanism in which the fabric essentially exfoliates like biological skin does, shedding the outermost layer after coming contact with a chemical or biological agent. Between these two mechanisms, the researchers think they’ll have a material that will let soldiers operate safely and comfortably in hot environments while offering automatic protective measures that spring into action in the presence of chemical or biological threats. The technology is still in the lab for now, but the UMass Amherst team thinks it could be in the field in less than a decade. UMass Amherst